Pressure dependence of density and structural relaxation of glass near the glass transition region

Linfeng Ding^{*†1}, Stephan Buhre¹, Clemens Kunisch², and Boris Kaus¹

¹Institute of Geosciences, Johannes Gutenberg University – 55128 Mainz, Germany ²SCHOTT AG – 55122 Mainz, Germany

Abstract

A simplified and effective pressure cell together with an experimental procedure has been developed and applied to compress samples of SCHOTT N-BK7â glass under static high pressures in a piston-cylinder apparatus. Results from the density and volume recovery measurements show that, the glass samples were effectively densified in piston-cylinder apparatus with the density at room temperature increasing linearly with frozen-in pressure. To explain the experimental data, we developed a mathematical model based on a suggestion by Gupta (1988) with two internal parameters, named fictive temperature (Tf) and fictive pressure (Pf), which fits the experimental data well.

Keywords: Glass, High pressure, Piston cylinder apparatus, Structural relaxation, Fictive temperature, Fictive pressure.

^{*}Speaker

[†]Corresponding author: dingli@uni-mainz.de