Spectroscopy as a tool for local density measurement in vitreous silica

Coralie Weigel¹, Marie Foret², Bernard Hehlen¹, and Benoit Rufflé*³

¹Laboratoire Charles Coulomb (L2C) – Université Montpellier II - Sciences et techniques, CNRS : UMR5221 – 1 place Eugène Bataillon Université Montpellier II 34095 Montpellier Cedex 5, France
²Institut Charles Coulomb – Université Montpellier – France
³Laboratoire Charles Coulomb (L2C) – CNRS : UMR5221, Université de Montpellier – 1 place Eugène Bataillon Université Montpellier II 34095 Montpellier Cedex 5, France

Abstract

The paper will discuss the possibility for light spectroscopies, e.g. Brillouin Light Scattering or Raman Scattering, to locally monitor the densification of amorphous silica. It is indeed well-known that silica significantly densifies under high stresses, either elastically as for example during a high-pressure experiment in a diamond-anvil cell below about 10 GPa or plastically above that limit. Further, this elastic limit strongly depends on the temperature. Irradiation-induced density changes are also observed using ultra-short laser pulses, neutrons or other particles. All these different routes lead to substantial structural modifications which in turn alter the response of silica to light spectroscopy in a complex manner.

Keywords: Spectroscopy, Silica, Densification, High Pressure

*Speaker